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Abstract— Computational fluid dynamics (CFD) simulators
have recently been used for optimization in die casting and
various other fields. However, solving an optimization problem
with a CFD simulator (CFD optimization problem) has the
issue of uncertainty in the evaluated values from the CFD
simulations. Such problems are, of course, difficult to optimize
compared to general problems. In this paper, we propose
an optimization algorithm that can search for good solutions
to CFD optimization problems exactly. We have applied the
algorithm to the optimization of the shape of a sprue for die
casting at an actual plant.

I. INTRODUCTION

Recently, the development of computational fluid dynam-

ics (CFD) simulators has made it possible to analyze fluid

behavior using personal computers. CFD simulation is a

technique whereby fluid is analyzed by solving the Navier-

Stokes equations numerically. With advances in computing

power and the sharp decrease in the price of personal

computers, CFD simulators have become prevalent in a

variety of fields[1]. Moreover, for die casting and other cast-

ing methods, CFD simulators have allowed visualization of

molten metal and have been used to optimize casting design

or casting conditions for improving product quality[2].

Many studies have been carried out on optimization using

a CFD simulator. Obayashi et al. optimized the shape of the

wing planform of a supersonic aircraft by using the Multiple

Objective Genetic Algorithm[3]. In addition, our laboratory

has used the Genetic Algorithm (GA) to optimize die casting

plunger speed in order to decrease air entrapment[4].

However, a CFD simulator produces uncertain analysis

results, owing to error in the numerical calculation. For opti-

mization problems using a CFD simulator (CFD optimization

problems), the optimal solution and its neighboring solutions

are difficult to find with a simple GA.

In the present study, we aim to devise a CFD optimization

algorithm that can search exactly for good solutions to an

optimization problem that has uncertain analytical values,

such as the CFD optimization problem. Specifically, the

algorithm treats the uncertainty in the evaluated values

from a CFD simulator as noise, and optimizes the problem

using the noise-corrected evaluated values. In this way,

the algorithm can search for solutions in an environment

where the uncertainty of the CFD simulator is reduced. The

proposed algorithm is used to optimize the shape of a sprue
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for die casting, and the effectiveness of the algorithm is

demonstrated through experiments at an actual die-casting

plant.

II. CFD OPTIMIZATION PROBLEM

A CFD simulator enables fluid analyses by solving a set of

partial differential equations called the Navier-Stokes equa-

tions. The conventional methods for solving these equations

are the difference method, the finite element method and

the boundary element method. All these methods subdivide

an analytical region into very small elements, such as grid

points, to solve the equations discretely and approximately.

Therefore, the analysis results vary depending on the method

of division. The CFD simulator used in this study employs

the difference method and subdivides an analytical region

into a mesh of fixed rectangular cells. The intended analysis

precision can be set by adjusting the mesh spacing or cell

size. In general, a fine mesh setting improves the analysis

precision, but increases the analysis time. In contrast, a

coarse mesh setting decreases the analysis time, but reduces

the analysis precision.

We examined the amount of error in the analysis results

from a CFD simulator. The simulation used for the sprue

shape optimization described herein was carried out by

varying the mesh position finely but maintaining the mesh

spacing. The results are shown in Fig. 1.
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Fig. 1. Variation in evaluated value depending on mesh position

The horizontal axis of this graph shows fine displacement

of the mesh position, and the vertical axis shows the eval-

uated value. Ideally, as the mesh position is changed, the

evaluated values would remain fixed. However, the evaluated
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values actually vary considerably. This variability is reduced

if the mesh is set finer, but such an approach for improving

the analysis precision is difficult because the analysis time

is increased.

Let us consider this variability in the evaluated values as

noise. Then, an evaluated value from the CFD simulator can

be modeled by the following equation:

Y = F (x)

= F̃ (x) + D(x, γ, σ) (1)

where F̃ (x) is the true ideal objective function without noise,

and its function value is thought to be close to the mean

value in Fig. 1 but cannot be observed. F (x) and Y are

actually obtained as the observed objective function and the

observed value, respectively, by adding noise D(x, γ, σ) to

F̃ (x). In D(x, γ, σ), γ is the random element of the noise

that corresponds to mesh position and σ is the intensity of

the noise that corresponds to mesh spacing. The observed

value Y is always constant if γ, σ and x are constant.

This shows that a CFD simulator has reproducibility under

identical conditions.

A general optimization problem entails finding the solution

x to minimize the objective function F (x) in (1). Meanwhile,

a CFD optimization problem entails finding x to minimize

the true objective function F̃ (x), which cannot actually be

obtained, with the help of the observed value Y including

noise. Therefore, the CFD optimization problem can be

considered an optimization problem including noise, and

finding the optimal solution is more difficult for a CFD

optimization problem than a general optimization problem.

For such optimization problems including noise, GA and

other similar algorithms can realistically be used to find the

optimal solution for F (x) but not F̃ (x).

III. CONSTRUCTION OF OPTIMIZATION ALGORITHM

WITH NOISE CORRECTION

We constructed a new optimization algorithm that can

search for good solutions to an optimization problem in-

cluding noise, such as a CFD optimization problem. This

optimization algorithm is based on the Real-coded Genetic

Algorithm (RealGA) and compensates for noise by using

a response surface. A response surface is an approximate

function of an objective function obtained by regression

analysis. The optimization algorithm treats function values

of the approximate function as evaluated values with noise

correction (corrected values), and then optimizes the prob-

lem.

In addition, to compare the performance of the proposed

algorithm to that of RealGA, we optimized a simplified

model of a CFD optimization problem using these algo-

rithms.

A. Noise Compensation Using Response Surface

The algorithm uses the least-squares method to generate

a response surface, and the approximate function as the

response surface is a multivariate polynomial function.

In the N -ary objective function F (x), the variable x is

described by

x = (x1, x2, . . . , xn, . . . , xN ) (2)

Let an individual (x, Y ) consist of this variable x and its

observed value Y , which is the function value of F (x). Let us

derive the approximate function f(x) by applying the least-

squares method to N -individuals.

Assuming that the variable of a d-th individual is

x[d] = (x1[d], x2[d], . . . , xn[d], . . . , xN [d]) (3)

the individual is (x[d], Y[d]). Meanwhile, assuming that the

approximate function f(x) is a more general function, not

only a polynomial function, f(x) is then given by

f(x) = a1f1(x) + a2f2(x) + · · ·

+ apfp(x) + · · · + aP fP (x) (4)

where P is the term number of the function f(x). Each fp(x)
can be taken as an arbitrary function regardless of linearity

or nonlinearity. Since these fp(x) are linearly combined by

the coefficient ap, however, f(x) is a linear function in this

sense. The least-squares method can approximate function

F (x) as the linear function f(x).
Therefore, to evaluate the approximate function f(x),

we evaluate coefficient ap(p = 1, . . . , P ), and each ap is

calculated using (5). In this equation, the summation ranges

of all Σ are d = 1, . . . , D.

Next, we define each fp(x), which is the component of

the approximate function f(x). Since we let f(x) be a

polynomial function, fp(x) can be expressed as follows:

fp(x) =

N
∏

n=1

xmpn
n (6)

where mpn is a nonnegative integer. Since fp(x) is expressed

as a product of the variables xn, apfp(x) is one term. Then,

the order of the term apfp(x) is

qp =
N

∑

n=1

mpn (7)

Consequently, the order of the approximate function f(x),
that is, q, is

q = max
p

qp (8)

f(x) can be made up of these terms in various combina-

tions. For simplicity, let the order q be the only parameter

deciding the combination of the terms, and let f(x) be

composed of all terms the order of which is equal to or less

than q, including the constant term. Then, the term number

of f(x), P , is given by

P = N+qCN (9)

Eventually, the corrected value y[d] of an individual

(x[d], Y[d]) is obtained as follows, by substituting x[d] into

(4).

y[d] = f(x[d]) (10)
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B. Optimization Algorithm

The proposed optimization algorithm is based on RealGA

and able to find a good solution to an optimization problem

including noise such as a CFD optimization problem by

compensating for noise.

A flowchart of the proposed algorithm is shown in Fig. 2.
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analyzed individuals
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Generating a child
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values
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End

Yes
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Initialization
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Fig. 2. Outline of proposed algorithm

At first, an initial population of individuals is generated

randomly using uniform random numbers. Next, these indi-

viduals are analyzed and the observed values of the individ-

uals are obtained. The algorithm evaluates the approximate

function as a response surface from the observed values,

and the corrected values are obtained. Then, candidates

for parent individuals are selected from all the analyzed

individuals based on their corrected values. Furthermore, two

actual parent individuals are selected from the candidates by

roulette selection, and one child individual is generated by

genetic operations such as crossover and mutation. This child

individual is analyzed like the initial population, and this

flow is repeated until the number of analyzed individuals

reaches the maximum number of individuals. Eventually,

the individual that has the best corrected value becomes the

optimized solution obtained from the algorithm.

The specific parameters of the algorithm are initial popu-

lation size, the number of candidate parent individuals, and

maximum number of individuals.

C. Validity Verification of Proposed Algorithm

We verified the validity of the proposed algorithm by

using a simplified model. Since a CFD optimization problem

requires an immense amount of time to be optimized and true

evaluated values are not observed, we constructed a model

to replace this CFD optimization problem. The model was

optimized by using the proposed algorithm and RealGA to

compare the performance of both algorithms at searching for

solutions.

We take the brachistochrone problem, which is a dy-

namic model similar to CFD, as the simplified model. A

brachistochrone is the curve between two points that can

be covered in the least time by a body that begins at the

start point with zero speed and moves along the curve to

the end point under the action of gravity. Here, the body

is a mass point and friction is not taken into account.

The conventional brachistochrone problem entails evaluating

this curve analytically, but we defined the descent curve

optimization problem as finding the descent curve that is

defined by certain design variables to minimize the descent

time calculated numerically.

Let the start point Ps and the end point Pe of the descent

curve be

Ps = (0, 0) (11)

Pe = (xe,−ze) (xe > 0, ze > 0) (12)

and set N -relay points between Ps and Pe:

Pn =

(

n

N + 1
xe,−zn

)

(zn > 0)

, n = 1, . . . , N (13)

where zn (n = 1, . . . , N) are the design variables of the

descent curve. Then, this descent curve is defined as a spline

curve joining these points and is described by the following

equation:

z = f(x, z1, . . . , zN ) (14)

An example of the descent curve is shown in Fig. 3.

Ps(0,0)

Pe(xe, -ze)

P1

P2

PN

Pn

z = f(x,z1,…,zN)

x

z

Fig. 3. Example of a descent curve

3910



The time a body takes to reach the end point of f(x) from

the start point, that is, the descent time, is calculated by

T̃ (z1, . . . , zN ) =

∫ xe

0

√

1 +
(

d
dx

f
)2

2gf
dx (15)

where g is the gravitational acceleration.

Assuming that noise is added to this descent time as in

(1), we obtain

T = T̃ + D(z, γ, σ) (16)

Here, T̃ is the true descent time or a real evaluated value,

T is the observed descent time or observed value, D is the

noise generated based on a normal random number, and σ
is the standard deviation of the normal random number as

the intensity noise. In addition, let the random element of

the noise γ be constant in one optimization, and the value

of D(z, γ, σ) is unique if z, γ and σ are fixed.

Therefore, the descent curve optimization problem is de-

fined by the following equation:

Minimize T̃ (z1, . . . , zN )
Subject to 0 < zn, n = 1, . . . , N

(17)

Let the real evaluated values T̃ be not observed during

the optimization, and we must search for the solution to

minimize T̃ based on the observed values T .

We optimized the descent curve using both the proposed

algorithm and RealGA, and compared the performance of

these algorithms at searching for solutions. The parameters

of the proposed algorithm and RealGA are listed in Table

I and Table II, respectively. The optimization problem has

six variables (N = 6). The maximum of the each variable is

10, the minimum is 0.1, and the step size is 0.1. In addition,

the gravitational acceleration is g = 9.81[m/s2] and the end

point is Pe = (10,−10)[m]. By setting the standard deviation

σ at four levels, σ = 0.0, 0.1, 0.2 and 0.3, we obtain

four optimization problems with different noise intensities.

When σ = 0.0, the optimization problem has no noise.

These optimization problems with different noise intensity

were optimized by each of the algorithms 50 times, and the

performance of these algorithms is evaluated by comparing

the mean value for each set of 50 optimized values.

TABLE I

PARAMETERS FOR PROPOSED ALGORITHM

Maximum number of individuals 300
Initial population size 20

Number of candidate parent individuals 20
Selection method Roulette selection

Crossover method BLX-α (α = 0.2)

Approximation order : q 2

The comparison of the optimized results is shown in Fig.

4.

This figure shows that the proposed algorithm can obtain

considerably better solutions than RealGA when the problem

has noise: σ = 0.1, 0.2 and 0.3. This is because the proposed

algorithm can estimate the initially evaluated values well by

TABLE II

PARAMETERS FOR REALGA

Maximum number of individuals 300
Population size 20

Number of elite individuals 15
Selection method Roulette selection

Crossover method BLX-α (α = 0.2)
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Fig. 4. Mean values of 50 optimized values versus σ for each algorithm

means of noise compensation. Unexpectedly, the proposed

algorithm yields slight better solutions than RealGA when

the problem has no noise: σ = 0.0. Therefore, the proposed

algorithm exhibits better performance than normal RealGA

for problems with and without noise.

IV. OPTIMIZATION OF SPRUE SHAPE FOR DIE CASTING

A. Formulation of Optimization Problem

We applied the proposed algorithm constructed in the

preceding section to the optimization of sprue shape for die

casting. The parameters for the proposed algorithm in this

optimization are taken from Table I.

A basic sprue shape and the layout of the design variables

are shown in Fig. 5, and the parameters for the design

variables are listed in Table III.

d
1

d
2

d
3

h
1

h
2

h
3

Fig. 5. Basic sprue shape and layout of design variables
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TABLE III

PARAMETERS FOR DESIGN VARIABLES

Design variable Max Min Step size

d1, d2, d3[mm] 20 1 0.1
h1, h2, h3[mm] 100 5 0.5

In Fig. 5, d1, d2, d3 and h1, h2, h3 are the design variables

that define the thickness of the center parts and the side parts

of the sprue, respectively.

An overview of the mesh setting is shown in Fig. 6, and

the parameters for the mesh setting are listed in Table IV.

Mesh Block

Gate

Product
(Test piece)

Sprue

Plunger

Fig. 6. Mesh setting for CFD simulation

TABLE IV

MESH PARAMETERS

Block Cell size [m] Number of cells

X-direction 0.002 40
Y-direction 0.0005 ∼ 0.002 329
Z-direction 0.002 100

Total number of cells 1,316,000

As seen in Fig. 6, the die casting device is symmetrical

about the Y-Z plane. Thus, the analytical region is set as only

a one-sided model. Furthermore, the mesh of thin-walled

parts such as the gate is set finely to increase the analysis

precision.

In the optimization, the shape of the sprue is evaluated

on the basis of the amount of entrapped air [4]. Since

air entrapment is responsible for inner defects of die-cast

products, a sprue can be evaluated by determining the amount

of air in the product by using a CFD simulator.

The amount of entrapped air in each time step, a(i), which

outflows from the gate, is

a(i) =

∑n

k=1(VakFfkVfkVck)
∑n

k=1(FfkVfkVck)
Vout(i) (18)

where Va is the volume fraction of entrapped air, Ff is the

volume fraction of fluid, Vf is the volume fraction of a cell,

Vc is the volume of a mesh cell, n is the total number of

mesh cells in the measurement region and Vout(i) is the

volume of fluid outflow in each time step. Thus, the amount

of entrapped air in a product, A, is obtained by the following

summation of a(i),

A =

Nf
∑

i=1

a(i) (19)

where Nf is the number of data until the total volume of

fluid outflow reaches the volume of the product.

Therefore, the optimization problem is defined by the

following equation:

Minimize Ã(d1, d2, d3, h1, h2, h3)
Subject to 1 ≤ d2 ≤ d1 ≤ 20

1 ≤ d3 ≤ 20
5 ≤ h2 ≤ h1 ≤ 100
5 ≤ h3 ≤ 100

(20)

It should be noted here that Ã is the true objective function

without noise, but the objective function observed is actually

A.

B. Optimization Result

The optimized shape of the sprue is shown in Fig. 7.

This figure also shows the initial shape of the sprue for

comparison.

Optimized shapeInitial shape

Fig. 7. Optimized and initial shape of sprue

The computation time for the optimization was about 200

hours using a PC with an Intel Core 2 Quad processor (2.83

GHz). The values of the design variables are d1 = 20.0, d2 =
12.6, d3 = 19.5, h1 = 100.0, h2 = 28.0 and h3 = 87.5, and

the observed value and the corrected value are 0.5366 and

0.4570, respectively.

The optimized shape is inflated compared to the initial

shape. It is thought that the shape moderates the flow of

molten metal, and thus reduces air entrapment in the molten

metal. In addition, a comparison of the simulation results for

these sprue shapes is shown in Fig. 8.

In this figure, the parts enclosed by an ellipse denote the

parts of the fluid with high air entrapment. For the initial

shape, the fluid with trapped air is inside the fluid flow,
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Optimized shape

Initial shape

Fig. 8. Simulation results

but for the optimized shape, the fluid with trapped air is

at the head of the flow. Therefore, it is expected that the

actual amount of entrapped air would be reduced by using

the optimized sprue shape.

C. Experimental Result

Experiments at an actual die-casting plant were performed

with the optimized sprue and the initial sprue. We used the

blister test to evaluate test pieces in these experiments. The

blister test is a method for analyzing the air capacity of a

product by heating the product and expanding the air. The

test pieces after blister tests are shown in Fig. 9; the areas

with air bubbles in the test pieces are shown in Fig. 10.

Initial Optimized

Fig. 9. Test pieces after blister tests
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Fig. 10. Areas with air bubbles

The areas with air bubbles were measured using graph pa-

per by counting the squares in the air bubble over 0.001[m] in

diameter. These figures indicate that the test piece had fewer

air bubbles using the optimized sprue than the initial sprue.

Thus, by using the proposed algorithm, we can optimize the

shape of the sprue to reduce these product defects.

V. CONCLUSION

An optimization algorithm that can search for good solu-

tion to the CFD optimization problem exactly by compen-

sating for the variation in uncertain evaluated values using a

response surface has been constructed. Moreover, the shape

of a sprue for die casting was optimized and then evaluated

experimentally at an actual die-casting plant. As a result,

it has been found the proposed algorithm reduces product

defects and leads to improved quality.

REFERENCES

[1] S. Pieri, C. Poloni and M. Muhlmeier, ”Integrating Multibody Sim-
ulation and CFD : toward Complex Multidisciplinary Design Op-
timization,” JSME international journal. Ser. B, Fluids and thermal
engineering, vol.48, no.2, pp.224-228, 2005.

[2] P. Cleary, M. Prakash, M. Sinnott, J. Grandfield, V. Alguine and
K. Oswald, ”3D SPH Simulations Of The Aluminium Ingot Casting
Process,” Third Int. Conf. on CFD in the Minerals and Process
Industries, pp.409-414, 2003.

[3] S. Obayashi and Y. Takeguchi, ”Multipoint Aerodynamic Design of
Supersonic Wing Planform Using MOGA,” Proceedings of the Seventh
Annual Conference of the Computational Fluid Dynamics Society of
Canada, Halifax, June, 1999.

[4] K. Yano, K. Hiramitsu, Y. Kuriyama and S. Nishido, ”Optimum Ve-
locity Control of Die Casting Plunger Accounting for Air Entrapment
and Shutting,” International Journal of Automation Technology, Vol.2,
No.4, pp.259-265, 2008.

3913


